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APPENDIX A: Supported I/O File Formats 
 
 
There are six types of I/O files used by or created by this package: grid, interface, restart, 
radiation, BC, and data files. Grid files define the discretized computational geometry of the 
problem, and are discussed in Section XX. Interface files describe how multiblock grids abut 
each other in computational space, and are discussed in Section XX. Restart files are saved 
periodically by the CFD code, and are used (as the name suggests) to restart the problem and/or 
to post-process the solution. See Section XX for more information. Radiation files are used to 
enable loose coupling between DPLR and a flowfield radiation analysis tool. See Section XX for 
more information. BC (boundary condition) files are used to specify various types of pointwise 
boundary conditions and/or TPS material maps. See Section XX for more information. Finally, 
data files are generated by POSTFLOW to enable post-processing and data analysis of the 
solution. See Section XX for more information. 
 
The DPLR package supports several different file I/O formats, as discussed in this section. Not 
all file formats are compatible with all codes; for example DPLR2D, DPLR3D, and POSTFLOW 
cannot read plot3d formatted files. Permissible file formats for each code are discussed in the 
section describing the code. Each file format is assigned a unique number and a unique file suffix 
that are common across the package. File format numbers are discussed below and summarized 
in Table A1. 
 
The first digit (if any) of the file format number specifies the data-storage type. A zero for the 
first digit indicates a file written as machine-specific unformatted files. In general this type of file 
should be avoided if portability is desired, since an unformatted file created by one machine type 
cannot in general be read by another. A one for the first digit indicates a file written in XDR 
format. XDR files are binary, but are written such that they can be read on any machine. This is 
the recommended storage type for large files, including grid and restart files. In order to read or 
write XDR files, the fxdr libraries must be installed on your computer and linked to DPLR 
during compilation; see Section XX for more information. A two for the first digit indicates an 
ASCII file. ASCII files are much larger than binary files, and should be avoided when possible. 
However, ASCII plot3d files are frequently used for grid input, since they are portable and can 
be written by most commercial grid generation packages. A three for the first digit indicates a 
gzipped ASCII file. This format is currently used only for output of plot3d data from 
POSTFLOW. 
 
The second digit of the file format number indicates the type of file. A one for the second digit 
indicates a parallel archival I/O file for use with DPLR. This is the preferred file type for grid, 
restart, radiation, and BC files that are to be read by DPLR. A two for the second digit indicates a 
plot3d grid or q-file. A three for the second digit indicates a plot3d grid or function file. Plot3d 
files cannot be read or written by DPLR2D or DPLR3D, but are frequently used to import data 
from or export data to other programs. A four for the second digit indicates a parallel multi-file 
grid or restart file; note that this file type is no longer supported by DPLR. A five for the second 
digit indicates a TECPLOT block file. A six for the second digit indicates a TECPLOT point file. 
TECPLOT data files are output by POSTFLOW for post-processing purposes, but cannot be read 
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as input by any of the codes in this package. In order to create binary TECPLOT files, the 
TECPLOT I/O library must be properly installed and linked to DPLR. See Section XX for more 
information. 
 
Note that, while they share many common subroutines, DPLR2D and DPLR3D are separate 
codes, and as such require properly dimensioned input. The most common misconception here is 
that DPLR2D reads a three-dimensional grid file, with the third dimension set to 1 and all z-
coordinates set to zero. This is not the case. When preparing a grid for DPLR2D it must be in 2D 
format. For example, if a plot3D grid is prepared for a 2D simulation, it should be in plot3D two-
dimensional format, and not three-dimensional format. If a three-dimensional grid is read as 
input to FCONVERT with idim = 2 the results will be unpredictable, but almost assuredly will 
not be what the user intends. 
 

Table A1  Allowed file formats 
 

Format Description File Type Suffix 
    
1 Unformatted Parallel grid pgrd 
  restart psln 
  BC pbcf 
  radiation prdf 
    

11 XDR Parallel grid pgrx 
  restart pslx 
  BC pbcx 
  radiation prdx 
    

21 ASCII Parallel grid pgra 
  restart psla 
  BC pbca 
  radiation prda 
    
2 Unformatted Plot3D grid gu 
  flow qu 
    

12 XDR Plot3D grid gx 
  flow qx 
    

22 ASCII Plot3D grid g 
  flow q 
    

32 Gzipped ASCII Plot3D grid gz 
  flow qz 
    
3 Unformatted Plot3D grid gu 
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  flow fu 
    

13 XDR Plot3D grid gx 
  flow fx 
    

23 ASCII Plot3D grid g 
  flow f 
    

33 Gzipped ASCII Plot3D grid gz 
  flow fz 
    
5 Binary Tecplot Block  plt 
    

25 ASCII Tecplot Block  dat 
    
6 Binary Tecplot Point  plt 
    

26 ASCII Tecplot Point  dat 
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APPENDIX F: More on Zonal Interfaces 
 
There are three possible types of zonal interfaces in 3D grids. The most important type are the 
face interfaces, which are described in detail in Section XX. However, other types of interfaces, 
known as edge and corner interfaces, can also be required to fully describe the connectivity of a 
multi-block grid file. Fortunately FCONVERT is capable of determining edge and corner 
interfaces for a multi-block grid automatically, and thus this information does not need to be 
included in the input interface file. However, a discussion of these interfaces is provided here for 
the interested reader. 
 
Face interfaces define cell face abutment across zonal boundaries and are necessary to permit 
proper convection and to maintain uniform high-order accuracy of the Euler flux extrapolation 
across zonal boundaries. Face interfaces of the original grid file must be computed by hand and 
provided as input to FCONVERT. However, additional face interfaces that result from parallel 
decomposition can be computed automatically by FCONVERT. As an example, consider Fig. F1 
in which a single block with 8 × 8 × 8 computational cells has been decomposed into four by 
performing a 2 × 2 × 1 decomposition. This decomposition produces four ordinary face 
interfaces connecting grid blocks 1-2, 1-3, 2-4, and 3-4, as shown in the figure. The face zonal 
interfaces that would be generated from such a decomposition can be viewed by setting ouint 
= 1 in the input deck. The resulting face interfaces are: 
 
 
----------------------------------------- 
Zonal Boundary #  1 
   nz nface ndr1 nst1 nen1 ndr2 nst2 nen2 
    1    2    2    1    4    3    1    8 
    2    1    2    1    4    3    1    8 
 
 ----------------------------------------- 
Zonal Boundary #  2 
   nz nface ndr1 nst1 nen1 ndr2 nst2 nen2 
    1    4    1    1    4    3    1    8 
    3    3    1    1    4    3    1    8 
 
 ----------------------------------------- 
Zonal Boundary #  3 
   nz nface ndr1 nst1 nen1 ndr2 nst2 nen2 
    2    4    1    1    4    3    1    8 
    4    3    1    1    4    3    1    8 
 
 ----------------------------------------- 
Zonal Boundary #  4 
   nz nface ndr1 nst1 nen1 ndr2 nst2 nen2 
    3    2    2    1    4    3    1    8 
    4    1    2    1    4    3    1    8 
 



dpcode V3.05.0 

5 

 
Edge interfaces occur in both 2D and 3D grids and are used to specify the connectivity of two 
grid blocks that abut at a single point (in a 2D grid) or along a single line (in a 3D grid). In the 
example above, in addition to the four face interfaces a pair of edge interfaces are generated, 
connecting blocks 1-4 and 2-3. These edge interfaces are indicated by two-way arrows in Fig. 
F1. Edge interfaces that have been automatically computed by FCONVERT can be viewed if 
desired by setting ouint = 11 in the input deck. The edge interfaces generated in this example 
look like this: 
 
 
----------------------------------------- 
Edge Zonal Boundary #  1 
   nz nface ndr1 nst1 nen1 ndr2 nst2 nen2 
    1    4    1    4    4    3    1    8 
    4    3    1    1    1    3    1    8 
 
 ----------------------------------------- 
Edge Zonal Boundary #  2 
   nz nface ndr1 nst1 nen1 ndr2 nst2 nen2 
    2    4    1    1    1    3    1    8 
    3    3    1    4    4    3    1    8 
 
 
where the range and extent specifiers identify the cells that are adjacent to each other across the 
zonal edge. 
 
Edge interfaces are not relevant for the computation of the Euler fluxes, since the stencil for 
computing the Euler fluxes is a cross (See Fig. XX in Section XX). Therefore the Euler fluxes in 
block #1 can be completely determined without any knowledge of the flow quantities in block 
#4, and vice versa. However, computation of the full viscous fluxes at a cell face requires 
information from a full 3 × 3 box stencil (See Fig. XX in Section XX). Therefore, in order to 
compute the viscous fluxes in block #1, knowledge of the flow values in a single cell in block #4 
is required. 
 
If we now consider the case where we split the original grid into eight blocks by performing a 2 
× 2 × 2 decomposition (Fig. F2) we generate 12 face and 12 edge interfaces (this can be 
determined by examination of Fig. F2, or by setting up the test in FCONVERT). In addition, four 
corner interfaces are generated, connecting blocks 1-8, 2-7, 3-6, and 4-5. Corner interfaces in 3D 
grids can be considered as analogous to edge interfaces in 2D grids, in that they define only a 
single computational cell that must be shared between the two grid blocks. Like edge interfaces, 
corner interfaces are not required for the computation of the Euler fluxes, but are necessary for 
the computation of the full viscous flux. 
 
The preceding examples of edge and corner interfaces were all created along Cartesian interfaces 
between two grid blocks. The resulting interfaces are two-way, ie. information transfer is 
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required in both directions across the specified boundary. It is also possible to generate Cartesian 
edge and corner interfaces that involve only one-way information transfer. As an example, 
consider the five-block grid depicted in Fig. F3. This grid has a total of seven face and six edge 
interfaces. The six edge interfaces that were created by this decomposition are indicated by 
arrows in the figure. Each of these interfaces is a one-way interface, as indicated by the direction 
of the arrow. The reason for this can be explained by looking at one of the edge interfaces in 
more detail. If we look at the edge interface between block #1 and block #4, we can see that 
block #4 gets all the information required from block #1 from the specified face interfaces. The 
additional information required to compute the viscous fluxes in block #4 is determined from the 
face interface shared with block #2. However, block #1 does not get all the information required 
from the face interface with block #4; an additional cell of overlap is required to determine the 
viscous flux. Therefore a one-way edge interface, that passes information from block #4 to block 
#1, is required. As discussed in Section XX, one-way interfaces are defined by putting a negative 
sign in front of the block number of the data receiver. The edge interface between block #1 and 
block #4 looks like this: 
 
 
 ----------------------------------------- 
Edge Zonal Boundary #  1 
   nz nface ndr1 nst1 nen1 ndr2 nst2 nen2 
   -1    4    1    4    4    3    1    4 
    4    3    1    5    5    3    1    4 
 
 
One-way edge interfaces are also generated at non-Cartesian boundaries between grids. As an 
example, consider Fig. F4a. In this case the L-shaped block #2 abuts block #1 along two faces. 
The face interfaces for this topography are clearly defined, and thus there is no ambiguity in the 
computation of the Euler fluxes. However, if we closely examine the imin-jmax corner in block 
#1 we notice that it is non-Cartesian; unlike all other interior grid points there are only three 
(rather than the Cartesian four) grid lines emanating from this point. This is a problem, because 
the computation of the viscous flux in the imin-jmax corner of block #1 requires a Cartesian 
stencil. From Fig F4a it is apparent that the face interfaces previously defined for this case are 
not sufficient to fully specify the Cartesian stencil required for the viscous fluxes in block #1; an 
edge interface is required between block #1 and #2 to supply the necessary information. On the 
other hand, block #2 does have sufficient information from the defined face interfaces. 
Therefore, what is required is a one-way interface that passes information from block #2 to block 
#1, but not the other way. 
 
Another interesting problem at non-Cartesian corners arises when we attempt to determine the 
computational cell in block #2 that should provide data to block #1; the choice is not unique. 
This can be seen in Fig. F4b, in which we divide the L-shaped block into two. The dashed lines 
in this figure represent the dummy cells for each block. Only a single row of dummy cells has 
been shown here, for simplicities sake. The star in block #1 represents the computational cell, 
which for which flowfield information is required. By a simple mapping exersize it can be 
determined that there are two possible sources for this information, as indicated by the symbols 
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in block #2. Which is the “correct” source depends on the method used to determine it. 
Fortunately, in practice it is not important which of the two possible sources is used, only that a 
consistent methodology is employed to determine the “correct” source. FCONVERT will 
automatically determine the correct source for this type of edge interface according to its own 
internal logic rules. For the case depicted in Fig. F4, FCONVERT will generate the following 
edge interface: 
 
 
----------------------------------------- 
Edge Zonal Boundary #  1 
   nz nface ndr1 nst1 nen1 ndr2 nst2 nen2 
    1    3    1    5    5    3    1    4 
   -2    1    2    6    6    3    1    4 
 
 
Other types of non-Cartesian interfaces, with five or more lines emanating from a grid point in 
2D are also possible; FCONVERT can handle all of these edge types. 
 
As a final note, while FCONVERT is capable of generating all necessary face, edge, and corner 
interfaces for any requested parallel decomposition, complex decompositions can result in a 
large number of interfaces. These interfaces are transparent to the user, but it is important to 
realize that each interface results in a send-receive message pair when the problem is run in 
DPLR. Large numbers of MPI messages can adversely affect the computational performance of 
the method. Therefore it is a good idea to perform parallel decomposition in the simplest manner 
possible when running FCONVERT. 
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Figure F1  Edge Zonal interface example #1. 

 
 

 
Fig. F2   Edge Zonal interface example #2. 
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Fig. F3   Edge Zonal interface example #3. 

 

 
Fig. F4a   Edge Zonal interface example #4. 
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APPENDIX P: More on POSTFLOW Output Variables 
 
This appendix is intended to provide additional information about some of the possible output 
variables from POSTFLOW. All output variables are expressed either as non-dimensional 
quantities, or in SI units. DPLR does not support English units. 
 
The output variables in POSTFLOW are selected via the ivarp integer array, where each 
output variable is assigned a unique integer quantity. These integers are a superset of those 
defined in the Plot3d and GASP programs. A complete listing of all possible output variables is 
provided in the Users Manual for POSTFLOW, in this appendix we provide more detailed 
information about some of these quantities. 
 
 
Grid-Related Variables 
 
 11 path length along grid lines in i-direction (si) 
 12 path length along grid lines in j-direction (sj) 
 13 path length along grid lines in k-direction (sk) 
 
Pathlength is determined by computing the distance from grid point to grid point in the mesh 
along the selected coordinate direction. For example, if ivarp = 11 is selected, POSTFLOW 
will compute the pathlength for each constant i line in the output datasets. The pathlength is 
assumed to begin at zero for ijk = 1 and increases for increasing index. 
 
 21 *body normal distance (dn) 
 
The body normal distance at a surface is defined as the distance from the cell center of the first 
interior cell to the face center on the surface. This is the distance used in the first-order 
approximations of derivatives, as well as that used to define y+ (ivarp = 581), and the cell 
Reynolds number (ivarp = 59). 
 
 22 *deviation from orthogonality [deg.] (dev) 
 
This is defined as the number of degrees the surface-normal grid lines deviate from perfect 
orthogonality. For interp = 1 this value represents a local average interpolated to the face 
center. The primary use of this output variable is as a measure of overall grid quality 
(orthogonality is desired at all body surfaces, but is generally unimportant at flow-through 
boundaries). 
 
 
Mixture Transport Properties 
 
 59 cell Reynolds number (Re_c) 
 
The cell Reynolds number is defined as 
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! 

Re
c

=
(a +V )"#

$
 

 
where a is the sound speed, V is the local velocity magnitude, Δη is the body normal distance 
(ivarp = 21), and ν is the kinematic viscosity. The cell Reynolds number is typically used as a 
way to judge the adequacy of the near-wall spacing in a boundary layer. Rec < 5 is generally 
sufficient to ensure accurate heat transfer and skin friction. 
 
 
Transport Properties 
 
 86 laminar Lewis number (Le) 
 96 turbulent Lewis number (Le_t) 
 
The Lewis number Le is defined as: 
 
 

! 

Le = "DCp /#  
 
where ρ is the mixture density, D is the binary diffusion coefficient, Cp is the total specific heat 
at constant pressure, and κ is the thermal conductivity. 
 
 87 laminar Schmidt number (Sc) 
 97 turbulent Schmidt number (Sc_t) 
 
The Schmidt number Sc is defined as: 
 

 

! 

Sc =
µ

"D
 

 
where µ is the mixture viscosity, ρ is the mixture density, and D is the binary diffusion 
coefficient. 
 
 88 laminar Prandtl number (Pr) 
 98 turbulent Prandtl number (Pr_t) 
 
The Prandtl number Pr is defined as: 
 
 

! 

Pr = µCp /"  
 
where µ is the mixture viscosity, Cp is the total specific heat at constant pressure, and κ is the 
thermal conductivity. 
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Mixture Flow Properties 
 
 102 stagnation mixture density (r_o) 
 112 stagnation pressure (p_o) 
 122 stagnation temperature (T_o) 
 
Stagnation quantities (density, pressure, and temperature) are computed assuming isentropic 
relations, and thus are not valid for a flowfield with varying isentropic exponent (γ). The 
stagnation quantities are defined as: 
 
 

! 

"
o

= "S
1

#$1  
 

 

! 

po = pS
"

"#1  
 
 

! 

T
o

= T
S  

 
where S is the entropy, defined below. 
 
 111 dynamic pressure (Q) 
 
The dynamic pressure Q is simply 
 
 

! 

Q = "V 2
/ 2  

 
 114 pressure coefficient (C_p) 
 
The pressure coefficient is defined as 
 
 

! 

( p " p# ) / Q#
 

 
where Q∞ is the freestream dynamic pressure. 
 
 121 bulk temperature (T_b) 
 
The bulk temperature is defined as in AIAA Paper No. 2001-2886: 
 

 

! 

Tb =
V
2

2Cp

 

 
 180 degree of ionization (zeta) 
 
 

! 

" = n
e
/n

t
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Surface Properties 
  
 512 heat transfer coefficient in mass flux units (Chm) 
 
This is the heat transfer coefficient expressed in kg/m2•s for use with FIAT. 
 

 

! 

Chm =
q

h" # hw( )
 

 
520 radiative equilibrium heat transfer (Qeq) 

 
  

! 

qeq = "#Tw
4  

 
This is the surface heat transfer as computed using the radiative equilibrium wall formation. In 
this expression ε is the surface emissivity, σ is the Stefan-Boltzmann constant, and Tw is the 
surface temperature. This variable is provided mainly as a sanity check to ensure that the 
computed heat transfer agrees with the radiative equilibrium value when a radiative equilibrium 
wall is specified. 



dpcode V3.05.0 

14 

APPENDIX U: PROVIDED DPLR UTILITIES 
 

Several codes or scripts are provided as utilities to the DPLR package. These tools are 
summarized in this section. All of these tools are located in the “utilities” directory of the DPLR 
package. 
 
 
dpconvert 
 
This tool is a Perl script provided to change the format of the DPLR input deck. It is provided 
primarily to enable a rapid conversion of older DPLR input decks to the current release of the 
software. The script is run from the command line: 
 

dpconvert –i old.inp –o new.inp 
 
where “old.inp” is the DPLR input deck that is desired to be converted, and “new.inp” is the 
output (converted) file. At runtime the script will automatically determine the version of the 
provided DPLR input deck “old.inp” and convert it to the current version. The user can also 
specify a desired output version number (other than the current version), with the –V option. 
 
 
seqinput 
 
This tool is a Perl script provided to sequence a DPLR input deck easily. Its primary function is 
to divide the grid sizes of each block in the input deck by a prescribed sequencing factor. The 
script is run from the command line: 
 

seqinter –i old.inp –o new.inp –s I:J:K 
 
where “old.inp” is the DPLR input deck that is desired to be sequenced, “new.inp” is the output 
(sequenced) file, and I:J:K are the sequencing factors in the i-, j-, and k-directions. It is 
assumed that all blocks are sequenced by the same factors. The script will generate the new 
DPLR input deck, and rename the input grid and restart files with the suffix “-sIJK”. These 
names can easily be changed by the user if desired. 
 
 
Moment 
 
This tool is a Fortran code that generates integrated force and moment data from an input set of 
pointwise surface forces. It is meant to be run on data generated by POSTFLOW using the 
ouform = 11 option, which automatically generates an input deck “Moment.inp” in addition to 
plot3d files will the appropriate data. Once these data have been generated, Moment is run from 
the command line: 

 
Moment < Moment.inp 
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It should be noted that Moment was originally written as a standalone tool, and has functionality 
that is not being used in in this mode. See the man pages on redwood (if available) for more 
information on the utility of this tool. 
 
 
zbconvert 
 
This tool is a Perl script provided to convert zonal interface files between different formats. The 
script currently supports conversion between the formats used by DPLR, GASP®, and SAGe. 
The script is run from the command line: 
 

zbconvert –i old.inter –o new.inter [-sage –dplr –gasp] (-g 
grid.g) 

 
The script automatically detects the format of the input interface file and converts it to one of the 
supported formats specified by the –sage, –dplr, or –gasp flags. If the output format is 
SAGe, one additional input is required; the user must specify the associated ASCII plot3d grid 
file using the –g flag as shown above. This is because SAGe requires knowledge of the grid size 
in the input deck, and this information is not available in the interface files for either DPLR or 
GASP. 
 
The primary uses of zbconvert are to transform a GASP formatted interfaced file generated 
by a commercial grid generator program to DPLR format, and to convert a DPLR interface file 
to SAGe format in preparation for grid adaption. 
 


